Answer 6.10

The (presumed) monoisotopic molecular ion peak is of medium intensity, located at m/z 106, and exhibits an isotopic pattern that cannot result from carbon alone, but Cl and Br can be excluded. In case of Si, the pattern wouldn't allow for additional carbons. Thus, S is reasonable.

Again, even mass indicates that the molecule contains 0, 2, 4, ... nitrogen atoms. The [M+1] peak has slightly larger intensity than the 34 S isotopic peak, m/z 108, which corresponds to just above 5 % or 4–5 carbon atoms.

m/z 75 (base peak)	[M–31], S pattern → [M–OCH₃] ⁺
<i>m/z</i> 61	$[M-45] \rightarrow [M-C_2H_4OH]^+$ or $[M-COOH]^+$?
m/z 47	$[M-31-28]$, $[M-OCH_3-CO]^+$ or $[M-OCH_3-C_2H_4]^+$?
m/z 45	[COOH] ⁺ or $[C_2H_5O]^+$ (oxonium ion)?
<i>m/z</i> 31	oxonium ion
m/z 29	$C_2H_5^+$
	m/z 47, 61, 75 are sulfonium ions \rightarrow thioether, thiol

The compound contains S and O. Assuming one each, 106 u - 16 u - 32 u = 58 u has to be C and H, i.e., the formula is $C_4H_{10}OS$; r+d=4-5+1=0

The unknown possesses thioether and alcohol or thioether and ether functionality.

Here, the fragmentation scheme clearly serves to assure the structure:

