
Answer 6.11

Identify the unknown from its 70 eV EI mass spectrum. The ¹H-NMR spectrum reveals an aliphatic chain and one signal indicating two exchangeable hydrogens.

The (presumed) monoisotopic molecular ion peak is of low intensity, located at m/z 255, and exhibits an isotopic pattern that seems to result from carbon alone. An odd mass indicates that the molecule contains 1, 3, 5 ... nitrogen atoms.

The general appearance of the EI mass spectrum coincides well with the findings from NMR spectroscopy, i.e., an alkyl chain with one functional group.

m/z 226	$[M-29], [M-C_2H_5]^+$
<i>m/z</i> 212	$[M-43], [M-C_3H_7]^+$
<i>m/z</i> 170	[M-43-42]
<i>m/z</i> 128	[M-43-42-42]
m/z 86	[M-43-42-42] series with stronger fragment every three
	carbons is common with long alkyl chains
m/z 72	γ-cleavage product of primary amides
m/z 59 (base peak)	McL product of primary amides
<i>m/z</i> 29, 43	alkyl ions

The compound should be a long chain primary aliphatic amide. Subtracting 44 u (CONH₂) from 255 u yields a rest of 211 u which fits to 15×14 u + 1u.

Therefore, the empirical formula is $C_{16}H_{33}NO$; r+d = 16 - 16.5 + + 0.5 + 1 = 1

The fragmentation scheme assures the structure: