Answer 6.12

Identify the unknown from its 70 eV EI mass spectrum. According to a FI mass spectrum acquired in addition, the peak at m/z 135 has been identified as [M-CH₃]⁺.

Due to the FI mass spectrum, $M^{**} = 150$. In the EI mass spectrum M^{**} is absent, i.e., the molecular ion readily undergoes fragmentation.

The even mass indicates 0, 2, 4, ... nitrogen atoms.

The isotopic pattern of [M-CH₃]⁺ results from CI (and carbon of course).

<i>m/z</i> 135, 137	[M–15], Cl pattern, [M–CH₃]⁺
<i>m/z</i> 109, 111	[M–41], CI pattern, [M–C₃H₅]⁺?
m/z 108, 110	[M–42], CI pattern, [M–C₃H ₆]⁺?
<i>m/z</i> 91, 93 (base peak)	[M–59], CI pattern, [M–COOMe] ⁺ or [M–OPr] ⁺ ?
<i>m/z</i> 73	[M–77] ?
<i>m/z</i> 63, 65	CI pattern
<i>m/z</i> 59	[COOMe] ⁺ or [OPr] ⁺ ?
<i>m/z</i> 43	most probably propyl ion (accompanied by m/z 39, 41)

Observations:

i) one series of reactions keeps the chlorine in the ion, the other series (of minor intensity) eliminates the chlorine, too;

ii) the unstable molecular ion eliminates C₃H₅• *and* C₃H₆ indicating the dominant occurrence of McL with double hydrogen transfer plus "normal" McL.

The assignment of a structure has to start with two assumptions: it could be an ester with a secondary alcohol \rightarrow isopropyl according to $C_3H_5^{\bullet}$ and C_3H_6 loss. The chlorine is in the carboxylic acid side of the molecule.

Subtracting 35 u (Cl) and 44 u (COO for ester) from 150 u leaves 71 u which fits to 5×14 u + 1u, i.e., C₅H₁₁ in total, C₃H₇ of which belong to the former alcohol. Therefore, only C₂H₄ is left.

The empirical formula is $C_6H_{11}CIO_2$; r+d = 6 – 0.5 × (11 + 1) + 1 = 1

The fragmentation scheme verifies the structure:

