Answer 6.12

Identify the unknown from its 70 eV El mass spectrum. According to a FI mass spectrum acquired in addition, the peak at $m / z 135$ has been identified as $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$.

Due to the Fl mass spectrum, $\mathrm{M}^{+\boldsymbol{}=} 150$. In the El mass spectrum $\mathrm{M}^{+\cdot}$ is absent, i.e., the molecular ion readily undergoes fragmentation.
The even mass indicates $0,2,4, \ldots$ nitrogen atoms.
The isotopic pattern of $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$results from Cl (and carbon of course).
m/z 135, 137
m/z 109, 111
m/z 108, 110
m/z 91, 93 (base peak)
m/z 73
m/z 63, 65
m/z 59
m/z 43
[M-15], Cl pattern, $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$
[M-41], Cl pattern, $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right]^{+}$?
[M-42], Cl pattern, $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}$?
[M-59], Cl pattern, [M-COOMe] ${ }^{+}$or $[\mathrm{M}-\mathrm{OPr}]^{+}$?
[M-77] ?
Cl pattern
[COOMe] $^{+}$or $[\mathrm{OPr}]^{+}$?
most probably propyl ion (accompanied by $m / z 39,41$)

Observations:
i) one series of reactions keeps the chlorine in the ion, the other series (of minor intensity) eliminates the chlorine, too;
ii) the unstable molecular ion eliminates $\mathrm{C}_{3} \mathrm{H}_{5}{ }^{*}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ indicating the dominant occurrence of McL with double hydrogen transfer plus „normal" McL.

The assignment of a structure has to start with two assumptions: it could be an ester with a secondary alcohol \rightarrow isopropyl according to $\mathrm{C}_{3} \mathrm{H}_{5}{ }^{\cdot}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ loss. The chlorine is in the carboxylic acid side of the molecule.

Subtracting $35 \mathrm{u}(\mathrm{CI})$ and 44 u (COO for ester) from 150 u leaves 71 u which fits to $5 \times 14 u+1 u$, i.e., $\mathrm{C}_{5} \mathrm{H}_{11}$ in total, $\mathrm{C}_{3} \mathrm{H}_{7}$ of which belong to the former alcohol. Therefore, only $\mathrm{C}_{2} \mathrm{H}_{4}$ is left.

The empirical formula is $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{ClO}_{2} ; r+d=6-0.5 \times(11+1)+1=1$

The fragmentation scheme verifies the structure:

