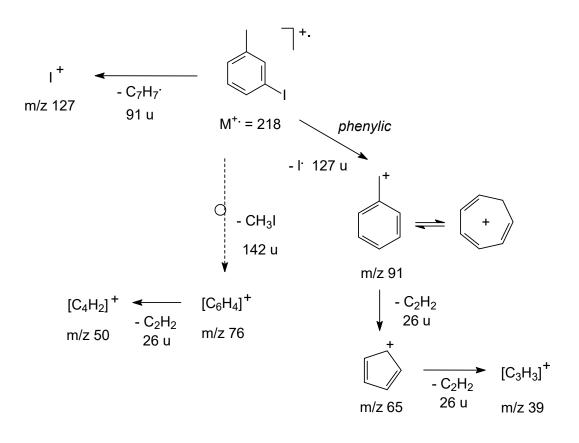

## Answer 6.14

Identify the unknown from its 70 eV EI mass spectrum.



The molecular ion, M<sup>++</sup> = 218 (base peak), is very stable, and its even mass indicates 0, 2, 4, ... nitrogen atoms. The isotopic pattern shows no Cl, Br, Si or S. From the <sup>13</sup>C-peak (7 %, use a ruler) we estimate only 6–7 carbons.


| <i>m/z</i> 127 | [M–91], [M–C7H7]⁺?                    |
|----------------|---------------------------------------|
| <i>m/z</i> 91  | $[M-127], [M-I]^+ \equiv [C_7H_7]^+?$ |
| <i>m/z</i> 65  | [M–127–26], [C₅H₅]⁺?                  |
| <i>m/z</i> 51  | [C₄H₃]⁺, aromatic fragment            |
| <i>m/z</i> 50  | [C₄H₂]⁺, aromatic fragment "−1 u"     |
| <i>m/z</i> 39  | [C₃H₃]⁺, aromatic fragment            |

The molecule must have a simple structure. Loss of 127 u corresponds to I' which is also consistent with a <sup>13</sup>C-peak of only 7 % despite of M<sup>++</sup> = 218. The series *m*/*z* 39, 50, 51, 65, (76), 91 clearly points to  $[C_7H_7]^+$  and its fragment ions.

The molecular formula is  $C_7H_7I$ ; r+d = 7 – 4 + 1 = 4

The structure should not be benzylic, because m/z 50 indicates a doubly substituted ring. It cannot be decided whether the substituents stand *o*, *m*, or *p* to each other.

Fragmentation scheme:

