Answer 6.18

Identify the unknown from its 70 eV El mass spectrum.
The compound has a deep orange color.
HR-MS: m/z 241.1220, m/z 148.0855, m/z 120.0800.

The molecular ion, $\mathrm{M}^{+*}=241$, is very stable.
Its odd mass indicates $1,3,5, \ldots$ nitrogen atoms.
The isotopic pattern shows no $\mathrm{Cl}, \mathrm{Br}, \mathrm{Si}$ or S .
From the ${ }^{13} \mathrm{C}$-peak (17%, use a ruler) we estimate $14-16$ carbons.
The intensity distribution points towards an aromatic or heterocyclic compound.
$m / z 148 \quad$ [M-93]
m/z 120
$\mathrm{m} / \mathrm{z} 105$ benzoyl ion?
$\mathrm{m} / \mathrm{z} 93$ [M-148], phenolic?
$\mathrm{m} / \mathrm{z} 77 \quad\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$?
The ions/losses 148, 93 and 120, 121 form pairs with total mass equal to M.

HR-MS: Exploit the differences between accurate m / z values to identify neutral losses. i) $241.1220 \mathrm{u}-148.0855 \mathrm{u}=93.0365 \mathrm{u}$ which fits $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right]^{+}$(calc. 93.0335 u) as can be expected for phenolic sub-structure;
ii) $241.1220 u-120.0800 u=121.0420 u$, no idea at first sight.

Color presents the key to solve this problem. Assume an azodye; add the mass of N_{2} : $93.0365 u+28.0061 u=121.0396 u$ correlating well with neutral loss of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ON}_{2}$ (calc. 121.0402 u).

Now, at least 3 nitrogen atoms are required to explain the odd mass of $\mathrm{M}^{+\bullet}$.

Try to fill the remaining 120 u with C, H, and 1 N . The formula $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}\right]^{+}$ (calc. $m / z 120.0808$) fulfils these criteria.

Molecular formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$; exp. $\mathrm{m} / \mathrm{z} 241.1220$, calc. 241.1210, o.k.
$r+d=14-7.5+1.5+1=9$

Fragmentation scheme:

