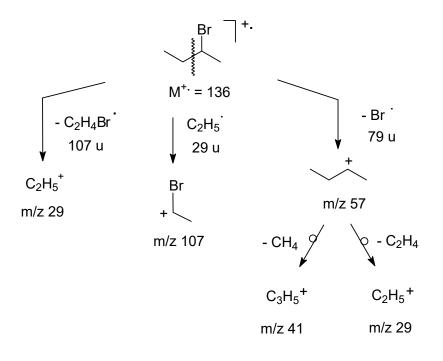

Answer 6.8

Identify the unknown from its 70 eV EI mass spectrum.

Starting from m/z 100, the intensities are shown magnified fivefold. Crawl across the mass spectrum to identify typical isotopic patterns, obvious mass differences, i.e., neutral losses, and/or well-known fragment ions or fragment ion series:

The monoisotopic molecular ion peak is weak, located at m/z 136 (most probably), and exhibits a Br isotopic pattern (136, 138). Even-numbered mass indicates 0, 2, 4, ... nitrogen atoms.

¹³C peaks are small, i.e., there are few carbons.


<i>m/z</i> 107, 109 (weak)	Br pattern, [M–29] \rightarrow [M–C ₂ H ₅] ⁺
<i>m/z</i> 80, 82 (weak)	Br pattern \rightarrow HBr ⁺
<i>m/z</i> 79, 81 (weak)	Br pattern \rightarrow [M–57] \rightarrow [M–C ₄ H ₉] ⁺ \equiv Br ⁺
<i>m/z</i> 57	$[M-79] \rightarrow [M-Br]^+$
<i>m/z</i> 39, 41	
<i>m/z</i> 27, 29	ightarrow series 27, 29, 39, 41, 57 perfectly fits the behavior of
	butyl ions

As we have one bromine, the remaining mass of the unknown is 136 u – 79 u = 57 u which should correspond to C_4H_9 .

Thus, the empirical formula is C₄H₉Br; r+d = $4 - 0.5 \times (9 + 1) + 1 = 0$

Here, the EI mass spectrum alone does not perfectly identify the isomer. However, the preferred loss of ethyl as compared to methyl or propyl indicates 2-bromobutane. One should compare the spectrum with reference spectra of the isomers.

Fragmentation scheme:

only monoisotopic masses are shown